Population introduction via translocation functions
Global ChEC Lab
Source:vignettes/translocation_example.Rmd
translocation_example.Rmd
In this vignette we present a simple example of the poems
workflow to show how to use a custom translocation
function
to introduce populations at defined time steps. The vignette also shows
how to define different growth rates for populations in different
regions.
Note that the examples are for a single stage matrix model.
Step 1: Build the population model for the study region
Create a model template using the PopulationModel class. This model is spatially explicit, so is defined using the Region class. In addition we make the model temporally explicit so we can introduce populations at defined time steps.
Study region
First, we’ll define our study region. For this example, we utilise a
raster::RasterLayer()
of Thylacine habitat suitability.
# Region raster
data(tasmania_raster)
tasmania_raster
#> class : RasterLayer
#> dimensions : 32, 40, 1280 (nrow, ncol, ncell)
#> resolution : 0.1, 0.1 (x, y)
#> extent : 144.5, 148.5, -43.8025, -40.6025 (xmin, xmax, ymin, ymax)
#> crs : +proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +no_defs
#> source : memory
#> names : layer
#> values : 1, 1 (min, max)
# Equal area projection
tasPrj <- 'PROJCS["Tasmania_Lambert_Azimuthal",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]],
PROJECTION["Lambert_Azimuthal_Equal_Area"],
PARAMETER["False_Easting",0.0],
PARAMETER["False_Northing",0.0],
PARAMETER["Central_Meridian",147],
PARAMETER["Latitude_Of_Origin",-42.2],
UNIT["Meter",1.0]]'
# Template raster to project to
tempExt <- projectExtent(tasmania_raster, tasPrj)
res(tempExt) <- 10000 # 10 km resolution
tempExt
#> class : RasterLayer
#> dimensions : 36, 34, 1224 (nrow, ncol, ncell)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
# Project the region
tasmania_raster <- projectRaster(tasmania_raster, tempExt,
method = "ngb"
)
plot(tasmania_raster,
main = "Tasmania raster",
legend = FALSE,
col = "#2E8B57", colNA = "grey75"
)
Now we can define our poems::Region
:
# Tasmania study region (735 non-NA cells stored in the order shown) #
region <- Region$new(template_raster = tasmania_raster)
region$region_raster
#> class : RasterLayer
#> dimensions : 36, 34, 1224 (nrow, ncol, ncell)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer
#> values : 1, 735 (min, max)
# Establish HS template and starting location #
# This will be our initial introduction point
int_ll <- sf_project(
from = "EPSG:4326",
to = tasPrj,
pts = cbind(146.44, -41.18)
)
int_point <- region$region_indices[
which(region$region_indices ==
cellFromXY(tasmania_raster, xy = int_ll))
]
# row which corresponds to initial introduction site
int_index <- which(region$region_indices == int_point) # 114
# plot of region, and introduction locations
plot(region$region_raster,
main = "Tasmanian study region (cell indices)",
colNA = "grey75",
addfun = function() {
points(xyFromCell(region$region_raster, int_point), col = "red", pch = 16)
}
)
Land-use modifier
Here we read in a land-use modifier layer which we can use to make our region spatiotemporally explicit. This has the effect of altering the HS values through time which causes dynamic changes in habitat suitability, and thus population abundances.
While we could change these values now and supply them as is to the simulator. In this example, we will use a Generator object later on to apply the HS scaling.
# read in the land-use modifier
data(tasmania_modifier)
plot(tasmania_modifier,
zlim = c(0, 1), colNA = "grey75",
col = hcl.colors(100, "RdYlGn")
)
# Habitat suitability
data(thylacine_hs_raster)
hs_raster <- projectRaster(thylacine_hs_raster, region$region_raster, method = "bilinear")
hs_raster <- stretch(hs_raster, minv = 0, maxv = 1)
hs_raster
#> class : RasterLayer
#> dimensions : 36, 34, 1224 (nrow, ncol, ncell)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer
#> values : 0, 1 (min, max)
# initial_hs needed for generator
initial_hs <- hs_raster <- stack(replicate(n = nlayers(tasmania_modifier), hs_raster))
While we have read in the land-use modifier, we have not applied it to the HS values yet. This means that our HS values are still static as shown by the plot below.
# static HS for the moment
## capacity generator will make it temporally dynamic
plot(hs_raster,
zlim = c(0, 1), colNA = "grey75",
col = hcl.colors(100, "RdYlGn"),
addfun = function() {
points(xyFromCell(region$region_raster, int_point), pch = 16, cex = 0.5)
}
)
Environmental correlation
Next, we’ll define a distance-based spatial correlation for applying environmental stochasticity within our model. The generated correlation data is compacted for computational efficiency (with large-scale models).
# Distance-based environmental correlation (via a compacted Cholesky decomposition)
env_corr <- SpatialCorrelation$new(
region = region,
amplitude = 0.496,
breadth = 80,
distance_scale = 1000
)
env_corr$calculate_compact_decomposition(decimals = 4)
Spatially-varying growth rates
Here we use IBRA regions to define varying growth rates for different populations. These could be expected to occur for example in a wide-ranging species that occurs in varying habitats (e.g. red foxes in Australia).
# allow growth rates to vary by region using IBRA regions
# Tasmania study Interim Bioregionalisation of Australia (IBRA) bioregion cell distribution
data(tasmania_ibra_raster)
ibra_raster <- projectRaster(tasmania_ibra_raster, region$region_raster, method = "ngb")
plot(ibra_raster,
colNA = "grey75",
breaks = seq(1, 9, 1),
main = "IBRA regions of Tasmania",
col = hcl.colors(10, "Lajolla")
)
data(tasmania_ibra_data)
tasmania_ibra_data
#> index key abbr name
#> 1 1 A FUR Furneaux
#> 2 2 B BEN Ben Lomond
#> 3 3 C TNM Tasmanian Northern Midlands
#> 4 4 D TSE Tasmanian South East
#> 5 5 E TW Tasmanian West
#> 6 6 F TNS Tasmanian Northern Slopes
#> 7 7 G TSR Tasmanian Southern Ranges
#> 8 8 H TCH Tasmanian Central Highlands
#> 9 9 I KIN King
# Calculate cell indices and counts for IBRA bioregions
ibra_indices <- lapply(
as.list(tasmania_ibra_data$index),
function(i) {
which(ibra_raster[region$region_indices] == i)
}
)
str(ibra_indices)
#> List of 9
#> $ : int [1:50] 11 12 20 21 22 23 24 25 35 36 ...
#> $ : int [1:68] 40 42 65 66 67 68 92 93 94 95 ...
#> $ : int [1:37] 180 181 209 210 211 212 213 238 239 240 ...
#> $ : int [1:131] 307 308 330 331 332 333 334 335 336 337 ...
#> $ : int [1:166] 104 131 132 133 134 135 162 163 164 165 ...
#> $ : int [1:59] 56 57 78 79 80 81 82 83 84 105 ...
#> $ : int [1:88] 404 429 430 431 432 457 458 459 483 484 ...
#> $ : int [1:87] 199 200 201 202 229 230 231 232 258 259 ...
#> $ : int [1:49] 1 2 3 4 5 6 7 8 9 10 ...
ibra_polygons <- rasterToPolygons(ibra_raster, dissolve = TRUE, na.rm = TRUE)
ibra_polygons@data <- merge(ibra_polygons@data, tasmania_ibra_data,
by.x = "layer", by.y = "index"
)
ibra_polygons
#> class : SpatialPolygonsDataFrame
#> features : 9
#> extent : -201571.8, 118428.2, -162583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> variables : 4
#> names : layer, key, abbr, name
#> min values : 1, A, BEN, Ben Lomond
#> max values : 9, I, TW, Tasmanian West
plot(ibra_polygons, col = hcl.colors(9, "Lajolla"), border = "black")
text(ibra_polygons, labels = "abbr", cex = 1.2, halo = TRUE)
rmax_regional <- ibra_raster
# seed is set to keep example results constant
{
set.seed(27)
rmax <- round(rlnorm(9, 0.94, 0.3), 1)
}
for (val in 1:9) {
rmax_regional[rmax_regional == val] <- rmax[val]
}
plot(rmax_regional,
colNA = "grey75",
legend = FALSE, main = "regional growth rates",
zlim = range(rmax),
addfun = function() {
plot(ibra_polygons,
border = hcl.colors(9, "Lajolla"),
col = NA, add = TRUE
)
text(ibra_polygons, labels = rmax, halo = TRUE)
},
col = hcl.colors(100, "Zissou")
)
# set upper and lower growth rates per region
ibra_rmax <- cbind(tasmania_ibra_data,
rmax_lower = round(rmax * 0.6, 2),
rmax_mean = round(rmax, 2),
rmax_upper = round(rmax / 0.75, 2)
)
ibra_rmax
#> index key abbr name rmax_lower rmax_mean rmax_upper
#> 1 1 A FUR Furneaux 2.70 4.5 6.00
#> 2 2 B BEN Ben Lomond 2.16 3.6 4.80
#> 3 3 C TNM Tasmanian Northern Midlands 1.20 2.0 2.67
#> 4 4 D TSE Tasmanian South East 1.02 1.7 2.27
#> 5 5 E TW Tasmanian West 1.08 1.8 2.40
#> 6 6 F TNS Tasmanian Northern Slopes 1.68 2.8 3.73
#> 7 7 G TSR Tasmanian Southern Ranges 1.56 2.6 3.47
#> 8 8 H TCH Tasmanian Central Highlands 2.16 3.6 4.80
#> 9 9 I KIN King 2.94 4.9 6.53
Step 2: Setup the translocation function
Here we generate a custom Translocation class object. This object can be used to translocate populations from one location to another, or as shown here, to introduce populations at defined locations and timesteps. The function could also be expanded to introduce varying number of animals at each site. For simplicity sake, this example releases the same number of animals at all locations.
Introduction sites and times
Here we define the introduction sites by matching
region$region_indices
to our introduction locations.
We also define the timesteps that the introductions should occur. These timesteps are sequential from 1, and are not defined by, for example, calendar years.
# set up translocation locations and order
intro_trans_ll <- sf_project(
from = "EPSG:4326",
to = tasPrj,
pts = cbind(
c(148.01, 144.7, 147.9, 148.27, 145.24),
c(-40.8, -40.7, -43.2, -42.02, -42.3)
)
)
intro_trans_ll
#> [,1] [,2]
#> [1,] 85234.38 154987.89
#> [2,] -194366.53 163999.33
#> [3,] 73150.82 -111470.77
#> [4,] 105182.23 19214.10
#> [5,] -145117.36 -12600.28
intro_trans_point <- region$region_indices[which(region$region_indices %in%
cellFromXY(region$region_raster,
xy = intro_trans_ll
))]
intro_trans_point <- intro_trans_point[-1]
intro_cells <- intro_trans_point
intro_cells
#> [1] 98 542 653 981
intro_times <- c(2, 3, 6, 8)
# Introduction times and locations
cbind(intro_times, intro_cells)
#> intro_times intro_cells
#> [1,] 2 98
#> [2,] 3 542
#> [3,] 6 653
#> [4,] 8 981
plot(region$region_raster,
main = "Introduction sites",
col = hcl.colors(100, "Lajolla"),
addfun = function() {
plot(ibra_polygons, border = "black", col = NA, add = TRUE)
points(xyFromCell(region$region_raster, intro_cells),
pch = 16,
cex = 1.5, col = c("darkgreen", "blue2", "black", "goldenrod")
)
points(region$coordinates[which(region$region_indices %in% intro_cells), ],
col = "firebrick", cex = 1.5, lwd = 2
)
}
)
Translocation function
Here we define the custom translocation
function. It’s
simply a list
object, with a nested function that uses
parameters from the model to make changes to the simulated
populations.
# User-defined translocation function (list-nested) and alias ####
translocation <- list(
# Function parameters (passed to function in params list)
intro_cells = intro_cells, # cells where pops are introduced
intro_timesteps = intro_times, # timesteps when introduced
trans_n = 50, # translocated abundances. If not provided by LHS == 50
region_indices = region$region_indices,
# Function definition
translocation_function = function(params) {
# Unpack parameters (used at every time step)
intro_cells <- params$intro_cells
intro_timesteps <- params$intro_timesteps
simulator <- params$simulator
stages <- params$stages
populations <- params$populations
abundances <- params$abundance
region_indices <- params$region_indices
tm <- params$tm # timestep
sa <- params$stage_abundance
trans_n <- params$trans_n
# if introduction at timestep, introduce pops
if (tm %in% intro_timesteps) {
# take stage abundance at timestep
new_sa <- array(sa, c(stages, populations))
# identifies location of introduction
trans_loc <- which(region_indices == intro_cells[which(intro_timesteps == tm)])
# add n individuals regardless of K
new_sa[trans_loc] <- new_sa[trans_loc] + trans_n
return(new_sa)
} else {
# else return pops as they are
new_sa <- array(sa, c(stages, populations))
return(new_sa)
}
}
)
translocation_aliases <- list(
intro_cells = "translocation$intro_cells",
intro_times = "translocation$intro_timesteps",
trans_n = "translocation$trans_n",
region_indices = "translocation$region_indices"
)
Step 3: Build generators for dynamically generating model parameters
Growth rate generator
Now we can build a Generator class object that will generate random growth rates based on quantiles between the min and max in each IBRA region. This allows us to sample across the range of values within each region.
# Build a Rmax generator based on sampled IBRA Rmax range quantile
rmax_gen <- Generator$new(
description = "Rmax",
spatial_correlation = env_corr,
generate_rasters = FALSE,
ibra_data_rmax = ibra_rmax,
ibra_indices = ibra_indices,
region_cells = region$region_cells,
inputs = c("rmax_quantile"),
outputs = c("growth_rate_max"),
generative_requirements = list(growth_rate_max = "function")
)
# growth_rate_max template
rmax_gen$add_function_template(
"growth_rate_max",
function_def = function(params) {
growth_rate_max <- array(0, params$region_cells)
for (i in 1:nrow(params$ibra_data_rmax)) {
growth_rate_max[params$ibra_indices[[i]]] <-
stats::qunif(params$rmax_quantile,
min = params$ibra_data_rmax$rmax_lower[i],
max = params$ibra_data_rmax$rmax_upper[i]
)
}
return(growth_rate_max)
},
call_params = c("ibra_data_rmax", "ibra_indices", "region_cells", "rmax_quantile")
)
# test rmax generator at median values
rmax_gen_ex <- rmax_gen$generate(input_values = list(rmax_quantile = 0.5))
rmax_regional[region$region_indices] <- rmax_gen_ex$growth_rate_max
plot(rmax_regional,
main = "median regional rmax",
col = hcl.colors(100),
addfun = function() {
plot(ibra_polygons, border = "black", col = NA, add = TRUE)
}
)
The map above shows the result of sampling our possible rmax
values to their median values. The plot below shows that we can sample
across a range of values using the same generator. This functionality
allows us to pass rmax_quantile
as a variable in a
LatinHypercubeSampler class.
# Test multiple quantiles
test_rmax <- lapply(seq(0, 1, 0.1), function(i) {
region$raster_from_values(rmax_gen$generate(input_values = list(rmax_quantile = i))$growth_rate_max)
})
test_rmax <- stack(test_rmax)
names(test_rmax) <- paste0("Q", seq(0, 1, 0.1))
# plot
plot(test_rmax,
colNA = "grey75",
legend = TRUE,
zlim = c(
min(values(test_rmax), na.rm = TRUE),
max(values(test_rmax), na.rm = TRUE)
),
addfun = function() {
plot(ibra_polygons, border = "black", col = NA, add = TRUE)
},
col = hcl.colors(100)
)
Dispersal generator
This generator controls dispersal across our region based on mean dispersal distance and proportion of dispersers.
# Dispersal generator ####
# Set for veriable mean distance, max hard-coded at 150
dispersal_gen <- DispersalGenerator$new(
region = region,
spatial_correlation = env_corr,
generate_rasters = FALSE,
dispersal_max_distance = 150,
distance_classes = seq(5, 150, by = 10),
distance_scale = 1000, # in km
dispersal_friction = DispersalFriction$new(), # modify coastline distances
inputs = c("dispersal_p", "dispersal_b"), # proportion and average distance
decimals = 4
)
dispersal_gen$calculate_distance_data()
head(dispersal_gen$distance_data$base, 10)
#> target_pop source_pop compact_row distance_class
#> X2 2 1 1 2
#> X3 3 1 2 3
#> X4 4 1 3 2
#> X5 5 1 4 2
#> X6 6 1 5 2
#> X7 7 1 6 3
#> X8 8 1 7 4
#> X9 9 1 8 5
#> X10 10 1 9 6
#> X13 13 1 10 3
table(dispersal_gen$distance_data$base$distance_class)
#>
#> 2 3 4 5 6 7 8 9 10 11 12 13 14
#> 5476 7790 9914 18696 15444 20798 19606 22140 29202 22426 26850 23702 28286
#> 15
#> 26086
Like with the rmax_gen
defined above, we can test our
dispersal generator over a range of values to make sure the dispersal
curve looks appropriate. We can see in the plot below that as the
proportion of dispersal decreases, so does the maximum dispersal
distance.
# plot dispersal curves for mean dispersal rates
disp_fun <- function(p, b, distance) {
p * exp(-distance / b)
}
disp_mat <- data.frame(
p = round(runif(1000, 5, 40) / 100, 2), # prop
b = round(runif(1000, 5, 40)) # mean distance
)
head(disp_mat)
#> p b
#> 1 0.26 22
#> 2 0.07 28
#> 3 0.08 25
#> 4 0.38 23
#> 5 0.23 23
#> 6 0.19 35
disp_test <- lapply(1:nrow(disp_mat), function(i) {
p <- disp_mat[i, "p"]
b <- disp_mat[i, "b"]
disp_x <- disp_fun(p, b, seq(5, 150, 5))
return(disp_x)
})
{
par(mar = c(4, 4, 0.5, 0.5))
matplot(
x = seq(5, 150, 5), y = rep(NA, 30), type = "l", ylim = c(0, 0.4),
xlab = "Disp. dist (km)", ylab = "Prop. disp.", yaxt = "n", xaxt = "n"
)
axis(1, at = seq(0, 150, 10))
axis(2, at = seq(0, 40, 5) / 100, labels = seq(0, 40, 5))
lapply(disp_test, function(i) {
matplot(
x = seq(5, 150, 5), y = unlist(i), type = "l", add = TRUE,
col = c("#C9C9C944")
)
})
lines(
x = seq(5, 150, 5),
y = apply(as.data.frame(disp_test), 1, mean), col = "firebrick"
)
}
dev.off()
#> null device
#> 1
Now that we’re happy the curve follows the right form, we can generate some dispersal data to test our population model with.
# Generate sampled dispersals for p = 0.35, b = 40 (km)
sample_dispersal_data <- dispersal_gen$generate(
input_values = list(dispersal_p = 0.35, dispersal_b = 40)
)$dispersal_data
head(sample_dispersal_data[[1]], 10) # examine
#> target_pop source_pop emigrant_row immigrant_row dispersal_rate
#> X2 2 1 1 1 0.0120
#> X3 3 1 2 1 0.0094
#> X4 4 1 3 1 0.0120
#> X5 5 1 4 1 0.0120
#> X6 6 1 5 1 0.0120
#> X7 7 1 6 1 0.0094
#> X8 8 1 7 1 0.0073
#> X9 9 1 8 1 0.0057
#> X10 10 1 9 1 0.0044
#> X13 13 1 10 1 0.0094
Capacity generator
Here we build a carrying capacity generator. Carrying capacity is based on maximum density values and scaled by HS (i.e. cells with a HS of 1 contain the highest densities).
The capacity generator is set-up in such a way that it requires multiple parameters to work.
1.max_dens
: the maximum theoretical density of
populations
2.q_thresh
: the quantile threshold used to rescale the
HS values
3.trans_n
: the number of animals that are introduced.
This value is consistent with the translocation
function.
capacity_gen <- Generator$new(
description = "capacity",
spatial_correlation = env_corr,
generate_rasters = FALSE,
time_steps = ncol(initial_hs),
hs_raster = initial_hs[region$region_indices], # provide full stack of HS. Template attached
hs_mod = tasmania_modifier[region$region_indices], # provide full stack of LULC modifier. Template attached
int_index = int_point,
trans_n = translocation$trans_n, # number of animals introduced
region_indices = region$region_indices,
inputs = c("max_dens", "q_thresh", "trans_n"),
outputs = c("initial_abundance", "carrying_capacity"),
generative_requirements = list(
initial_abundance = "function",
carrying_capacity = "function"
)
)
capacity_gen$add_function_template(
param = "initial_abundance",
function_def = function(params) {
distr_a <- params$hs_raster[, 1]
## 0 everywhere except the intro point at the first time step
## intro point to trans_n
## Could be above or below carrying capacity
idx <- which(params$region_indices == params$int_index)
distr_a[idx] <- params$trans_n
distr_a[-idx] <- 0
return(distr_a)
},
call_params = c("hs_raster", "int_index", "region_indices", "trans_n")
)
capacity_gen$add_function_template(
"carrying_capacity",
function_def = function(params) {
idx <- which(params$region_indices == params$int_index)
distr_k <- params$hs_raster
distr_mod <- params$hs_mod
stopifnot(
"hs_raster and hs_mod have different number of layers" =
dim(distr_k) == dim(distr_mod)
)
# stretch HS values based on q_thresh
distr_k <- scales::rescale(distr_k, from = c(0, params$q_thresh), to = c(0, 1))
distr_k[distr_k < 0] <- 0
distr_k[distr_k > 1] <- 1
# multiply thresholded HS by hs_modifier
distr_k <- distr_k * distr_mod
# rescale back to {0, 1}
qMax <- max(distr_k, na.rm = TRUE)
distr_k <- scales::rescale(distr_k, from = c(0, qMax), to = c(0, 1))
distr_k[distr_k < 0] <- 0
distr_k[distr_k > 1] <- 1
# carrying capacity = (HS * maximum density)
distr_k <- ceiling(distr_k * params$max_dens)
distr_k[idx, 1] <- params$max_dens
# distr_k[-idx, 1] <- 0
return(distr_k)
},
call_params = c("hs_raster", "hs_mod", "int_index", "region_indices", "max_dens", "q_thresh")
)
# have all parameters been specified correctly
capacity_gen$generative_requirements_satisfied()
#> $initial_abundance
#> [1] TRUE
#>
#> $carrying_capacity
#> [1] TRUE
Now we have defined our generator we can make some test data for the model
# Generate example initial abundance and declining carrying capacity time-series
generated_k <- capacity_gen$generate(input_values = list(
max_dens = 100, q_thresh = 0.90,
trans_n = 60
))
example_initial_abundance <- generated_k$initial_abundance
example_carrying_capacity <- generated_k$carrying_capacity
# Plot the example initial abundance
example_initial_n_raster <- region$raster_from_values(example_initial_abundance)
example_initial_n_raster
#> class : RasterLayer
#> dimensions : 36, 34, 1224 (nrow, ncol, ncell)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer
#> values : 0, 60 (min, max)
plot(example_initial_n_raster,
main = "Example initial abundance",
col = hcl.colors(100, "Lajolla", rev = TRUE), colNA = "grey75",
addfun = function() {
plot(ibra_polygons, border = "black", col = NA, add = TRUE)
}
)
# Plot the carrying capacity
## carrying capacity is forced to maximum theoretical value at first time step
example_k <- region$raster_from_values(example_carrying_capacity)
example_k[[c(1, 6, 11)]]
#> class : RasterBrick
#> dimensions : 36, 34, 1224, 3 (nrow, ncol, ncell, nlayers)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer.1, layer.6, layer.11
#> min values : 0, 0, 0
#> max values : 100, 67, 99
plot(example_k,
col = hcl.colors(100, "RdYlGn", rev = TRUE), colNA = "grey75",
addfun = function() {
plot(ibra_polygons, border = "black", col = NA, add = TRUE)
},
zlim = c(0, 100)
)
Step 4: Build a template model
Using the generators we’ve built we can now test if our simple population model works as expected.
# Template model ####
model_template <- PopulationModel$new(
region = region,
time_steps = 11,
years_per_step = 1,
stage_matrix = 1, # single-stage
populations = region$region_cells, # 735
demographic_stochasticity = TRUE,
standard_deviation = 0.18,
density_dependence = "logistic", # Ricker
harvest = FALSE, # No harvest
dispersal = dispersal_gen,
translocation = translocation,
dispersal_source_n_k = list(threshold = 0.92, cutoff = 0),
simulation_order = c("translocation", "results", "transition", "dispersal"),
random_seed = 20230210,
attribute_aliases = translocation_aliases,
results_selection = c("abundance")
)
model <- model_template$clone()
model$set_attributes(
initial_abundance = example_initial_abundance,
carrying_capacity = example_carrying_capacity,
growth_rate_max = rmax_gen_ex$growth_rate_max,
translocation = translocation,
trans_n = 75, # passed through to translocation function
dispersal = sample_dispersal_data
)
# run poems simulator
results <- population_simulator(model)
results$all$abundance
#> [1] 60 461 1687 4826 6058 9342 10085 17090 13115 18711 12527
# timeseries of total abundance
plot(1:11, results$all$abundance,
type = "l",
xlab = "timestep", ylab = "Total abundance"
)
The template model runs successfully and now we can make some maps of the dispersal patterns of the populations from their initial introduction.
abund_ras <- region$raster_from_values(results$abundance)
abund_ras[[c(1, 6, 11)]]
#> class : RasterBrick
#> dimensions : 36, 34, 1224, 3 (nrow, ncol, ncell, nlayers)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer.1, layer.6, layer.11
#> min values : 0, 0, 0
#> max values : 60, 250, 345
abd_max <- round_any(max(values(abund_ras), na.rm = TRUE), 20, f = ceiling)
# plot of abundances. log(x+1) transformed.
plot(log1p(abund_ras),
col = hcl.colors(100),
colNA = "grey75",
addfun = function() {
plot(ibra_polygons, border = "black", col = NA, add = TRUE)
},
zlim = c(0, log1p(abd_max))
)
To make sure our translocation
function is working
correctly, we can run the template model again but with the
translocation
function turned off.
model$set_attributes(
initial_abundance = example_initial_abundance,
carrying_capacity = example_carrying_capacity,
growth_rate_max = rmax_gen_ex$growth_rate_max,
translocation = NULL,
dispersal = sample_dispersal_data
)
results_notransn <- population_simulator(model) # run poems simulator
results_notransn$all$abundance
#> [1] 60 386 1614 4651 5532 8984 9672 15588 13801 17901 13641
results$all$abundance
#> [1] 60 461 1687 4826 6058 9342 10085 17090 13115 18711 12527
abund_ras_notransn <- region$raster_from_values(results_notransn$abundance)
abund_ras_notransn[[c(1, 6, 11)]]
#> class : RasterBrick
#> dimensions : 36, 34, 1224, 3 (nrow, ncol, ncell, nlayers)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer.1, layer.6, layer.11
#> min values : 0, 0, 0
#> max values : 60, 278, 298
diff_ras <- abund_ras - abund_ras_notransn
diff_ras[[1:2]]
#> class : RasterBrick
#> dimensions : 36, 34, 1224, 2 (nrow, ncol, ncell, nlayers)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer.1, layer.2
#> min values : 0, 0
#> max values : 0, 75
We can see from the diff_ras
above that the difference
between timesteps 2 of the two model runs is 75 individuals, which was
the value passed through to the translocation
function of
the original model run.
And now we can plot the difference.
plotmax <- round_any(max(abs(values(diff_ras)), na.rm = TRUE), 10, ceiling)
plot(diff_ras[[c(1, 6, 11)]],
zlim = c(-plotmax, plotmax),
breaks = c(-plotmax, -100, -50, -20, 0, 20, 50, 100, plotmax),
col = hcl.colors(9, "PuOr"),
colNA = "grey75",
addfun = function() {
plot(ibra_polygons, col = NA, add = TRUE)
}
)
Step 5: Run multiple simulations
In order to explore the model parameter space to find the best models, we generate Latin hypercube samples of model and generator parameters to be simulated, using the LatinHypercubeSampler class. This class has functionality for generating sample parameters via Uniform, Normal, Lognormal, Beta, and Triangular distributions. For our example we only generate 10 samples. Typically however, a user would need to generate thousands to tens of thousands, of samples.
Define the latin-hypercube for sampling
# Latin-hypercube sampler ####
lhs_gen <- LatinHypercubeSampler$new()
# Habitat suitability threshold
lhs_gen$set_uniform_parameter("q_thresh", lower = 0.90, upper = 0.99, decimals = 2)
# Growth rate
lhs_gen$set_uniform_parameter("rmax_quantile", lower = 0, upper = 1, decimals = 2)
lhs_gen$set_uniform_parameter("standard_deviation", lower = 0.00, upper = 0.70, decimals = 2)
# Dispersal
lhs_gen$set_uniform_parameter("dispersal_p", lower = 0.05, upper = 0.40, decimals = 2)
## mean dispersal between 5 and 40 km
lhs_gen$set_uniform_parameter("dispersal_b", lower = 5, upper = 40, decimals = 0)
lhs_gen$set_uniform_parameter("dispersal_n_k_threshold", lower = 0.7, upper = 1.0, decimals = 2)
# Density max
## Density: animals/km2 needs to be scaled by grid size (10km x 10km)
## e.g. 1/km2 = (1 animal/km2 * (10*10) ) * frac_cell_used
## 1 km2 = 80 per grid cell = (1*(10*10))*0.8 # assuming 80% grid cell used
## Here I have assumed only 80% of cell is suitable. Upper/lower = 1/km - 6.25/km
lhs_gen$set_uniform_parameter("max_dens", lower = 80, upper = 500, decimals = 0)
# Translocation
lhs_gen$set_uniform_parameter("trans_n", lower = 10, upper = 100, decimals = 0)
sample_data <- lhs_gen$generate_samples(number = 10, random_seed = 42)
head(sample_data)
#> q_thresh rmax_quantile standard_deviation dispersal_p dispersal_b
#> 1 0.97 0.72 0.31 0.21 15
#> 2 0.92 0.33 0.12 0.26 6
#> 3 0.95 0.05 0.47 0.32 21
#> 4 0.94 0.50 0.61 0.15 10
#> 5 0.98 0.85 0.39 0.38 37
#> 6 0.98 0.94 0.67 0.18 32
#> dispersal_n_k_threshold max_dens trans_n
#> 1 0.84 300 92
#> 2 0.94 497 71
#> 3 0.95 341 14
#> 4 0.70 232 27
#> 5 0.74 106 53
#> 6 0.77 455 37
# Make unique row names for saving files
{
set.seed(54612)
sample_data$UniqueID <- paste0(
stri_rand_strings(nrow(sample_data), 4, "[A-Z]"),
stri_rand_strings(nrow(sample_data), 4, "[0-9]")
)
}
sample_data <- sample_data[, c(9, 1:8)]
sample_data
#> UniqueID q_thresh rmax_quantile standard_deviation dispersal_p dispersal_b
#> 1 GFUR0745 0.97 0.72 0.31 0.21 15
#> 2 PEZO0880 0.92 0.33 0.12 0.26 6
#> 3 NWRT4531 0.95 0.05 0.47 0.32 21
#> 4 QFAA0197 0.94 0.50 0.61 0.15 10
#> 5 TDPB8128 0.98 0.85 0.39 0.38 37
#> 6 ZWCU8467 0.98 0.94 0.67 0.18 32
#> 7 HQPY9567 0.96 0.17 0.06 0.07 28
#> 8 LROH7589 0.93 0.21 0.54 0.11 23
#> 9 CETL2983 0.91 0.58 0.22 0.26 34
#> 10 ZOXX4201 0.92 0.64 0.19 0.36 16
#> dispersal_n_k_threshold max_dens trans_n
#> 1 0.84 300 92
#> 2 0.94 497 71
#> 3 0.95 341 14
#> 4 0.70 232 27
#> 5 0.74 106 53
#> 6 0.77 455 37
#> 7 1.00 200 78
#> 8 0.88 393 44
#> 9 0.85 278 85
#> 10 0.79 128 61
We we can run a simulation for each set (or row) of sampled parameters. The SimulationManager class manages the generation of parameters (via the generators), the running the model simulations, and writing simulation results to disk. It also maintains a log of each simulation’s success and any errors or warnings encountered.
OUTPUT_DIR <- tempdir()
model <- model_template$clone()
model$set_attributes(params = list(
"standard_deviation" = NULL,
"dispersal_source_n_k$threshold" = NULL,
"dispersal_source_n_k$cutoff" = 0.00
))
# Build the simulation manager
sim_manager <- SimulationManager$new(
sample_data = sample_data,
model_template = model,
# initial_hs = initial_hs,
generators = list(dispersal_gen, capacity_gen, rmax_gen),
parallel_cores = 1L,
results_filename_attributes =
c(NULL, "UniqueID", "results"),
results_ext = ".RDS",
results_dir = OUTPUT_DIR
)
# Takes <10 seconds to run 10 example sims on a single core.
system.time({
run_output <- sim_manager$run()
})
#> user system elapsed
#> 2.817 0.255 3.108
run_output$summary
#> [1] "10 of 10 sample models ran and saved results successfully with warnings"
Step 6: Extract results from simulations
Now that the simulations have run, we can extract the modelled abundances. We now wish to collate summary results for each of our simulations via the ResultsManager class. This manager loads the results from each sample simulation into an intermediate PopulationResults class object, which dynamically generates further results. We need to define functions for calculating summary metrics, as well as any matrices (one row of values per simulation) that we may be interested in examining.
We can see from above that the run_output$summary
shows
that there were a number of simulations that didn’t complete
successfully:
run_output$summary
#> [1] "10 of 10 sample models ran and saved results successfully with warnings"
The run_output$full_log
shows that some simulations
produced NA values when calculating population abundances:
"Warning: Non-finite stage abundances returned by user-defined translocation function"
These simulations had a range of parameter values that caused the
simulation to “fall-over”. These errors could be fixed by improving the
translocation
function, or alternatively the user could
discard the simulations as being structurally wrong - i.e. that specific
combination of parameters is simply unsuitable. We’re going to treat
them as the latter.
Extract results
# Extract timeseries of abundance from each of the sims
# Load our results (list) into a PopulationResults object
p_results <- PopulationResults$new(results = run_output)
res_manager <- ResultsManager$new(
simulation_manager = sim_manager,
simulation_results = p_results,
generators = NULL,
summary_matrices = c(
"n",
"distr_pop"
),
summary_functions = list(
# total pop abundance
"n" = function(sim_results) {
sim_results$all$abundance
},
# matrix of abundance
## can be made into raster
"distr_pop" = function(sim_results) {
sim_results$abundance
}
),
parallel_cores = 1L
)
gen_log <- res_manager$generate()
gen_log$summary
#> [1] "10 of 10 summary metrics/matrices generated from sample results successfully"
# matrix of total population abundances
## each row is a sim, each column a timestep
res_manager$summary_matrix_list$n
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] 92 3323 7026 15041 26668 22664 41992 41696 62850 41843 59052
#> [2,] 71 1967 2021 3882 7892 10605 20999 25497 38943 43938 47138
#> [3,] 14 264 420 2109 6779 13228 13882 25794 24008 32783 26782
#> [4,] 27 1364 1799 3694 7062 12462 17371 29558 24840 34150 27849
#> [5,] 53 961 6666 8417 9409 19195 14169 30511 17347 28239 NA
#> [6,] 37 7833 45987 31579 88186 55046 128827 97272 NA NA NA
#> [7,] 78 687 388 707 1804 3405 6199 10775 12983 14604 13386
#> [8,] 44 1024 989 3589 7830 14645 17947 29238 28654 36924 32740
#> [9,] 85 2270 8646 15371 20338 29326 33191 52467 NA NA NA
#> [10,] 61 875 2541 6666 8545 12917 14238 23607 20734 22180 21780
# plot
matplot(
x = 1:ncol(res_manager$summary_matrix_list$n),
y = t(res_manager$summary_matrix_list$n), type = "b",
lty = 1, xlab = "timestep", ylab = "total abundance"
)
From the results we can see that our translocation
function was working correctly, and that our capacity_gen
was defined correctly, as the abundances in the first time step are the
same as the trans_n
values from our latin-hypercube
samples.
identical(
unlist(res_manager$summary_matrix_list$n[, 1]),
unlist(sample_data$trans_n)
)
#> [1] TRUE
Let’s assume that samples 2, 3, 4, and 8 are our “best” simulations after some sort of validation. We have already extracted the abundances from these simulations, so now with a few more lines of code, we can generate averages of the simulations as rasters
best_sims <- c(2:4, 8)
dim(res_manager$summary_matrix_list$distr_pop[best_sims, ])
#> [1] 4 8085
best_abund <- matrix(
nrow = region$region_cells,
ncol = 11, # 11 timesteps,
data = round(colMeans(res_manager$summary_matrix_list$distr_pop[best_sims, ]))
)
best_abund <- region$raster_from_values(best_abund)
best_abund[[c(1, 6, 11)]]
#> class : RasterBrick
#> dimensions : 36, 34, 1224, 3 (nrow, ncol, ncell, nlayers)
#> resolution : 10000, 10000 (x, y)
#> extent : -211571.8, 128428.2, -182583.2, 177416.8 (xmin, xmax, ymin, ymax)
#> crs : +proj=laea +lat_0=-42.2 +lon_0=147 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs
#> source : memory
#> names : layer.1, layer.6, layer.11
#> min values : 0, 0, 0
#> max values : 39, 407, 634
abd_max <- round_any(max(values(best_abund), na.rm = TRUE),
accuracy = 100, ceiling
)
# plot of log(x+1) abundances
plot(log1p(best_abund),
col = hcl.colors(100, "Spectral", rev = TRUE),
colNA = "grey75",
addfun = function() {
plot(ibra_polygons, border = "#000000", col = NA, add = TRUE)
},
zlim = c(0, log1p(abd_max))
)