Skip to contents

R6 class to represent a manager for running multiple model simulations and saving results.

Super classes

poems::GenericClass -> poems::GenericManager -> SimulationManager

Public fields

attached

A list of dynamically attached attributes (name-value pairs).

Active bindings

sample_data

A data frame of sampled parameters for each simulation/result.

model_template

A SimulationModel (or inherited class) object with parameters common to all simulations.

nested_model

A SimulationModel (or inherited class) object with empty sample parameters and a nested model template common to all simulations.

generators

A list of generators (Generator or inherited class) objects for generating simulation model values.

model_simulator

A ModelSimulator (or inherited class) object for running the simulations.

parallel_cores

Number of cores for running the simulations in parallel.

results_dir

Results directory path.

results_ext

Result file extension (default is .RData).

results_filename_attributes

A vector of: prefix (optional); attribute names (from the sample data frame); postfix (optional); utilized to construct results filenames.

error_messages

A vector of error messages encountered when setting model attributes.

warning_messages

A vector of warning messages encountered when setting model attributes.

Methods

Inherited methods


Method new()

Initialization method sets any included attributes (sample_data, model_template, generators, model_simulator, parallel_cores, results_dir, results_filename_attributes) and attaches other attributes individually listed.

Usage

SimulationManager$new(model_template = NULL, ...)

Arguments

model_template

A SimulationModel (or inherited class) object with parameters common to all simulations.

...

Parameters listed individually.


Method run()

Runs the multiple population simulations (via the set function), stores the results, and creates/writes a simulation log.

Usage

SimulationManager$run(results_dir = NULL)

Arguments

results_dir

Results directory path (must be present if not already set within manager class object).

Returns

Simulator log as a list.


Method set_model_sample()

Sets the model sample attributes via the sample data frame and the generators.

Usage

SimulationManager$set_model_sample(model, sample_index)

Arguments

model

SimulationModel (or inherited class) object (clone) to receive sample attributes.

sample_index

Index of sample from data frame.


Method log_simulation()

Summarizes the simulation log generated within the run method and writes it to a text file in the results directory.

Usage

SimulationManager$log_simulation(simulation_log)

Arguments

simulation_log

Nested list of simulation log entries generated via the run method.


Method clone()

The objects of this class are cloneable with this method.

Usage

SimulationManager$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (FALSE) { # interactive()
# U Island example region
coordinates <- data.frame(
  x = rep(seq(177.01, 177.05, 0.01), 5),
  y = rep(seq(-18.01, -18.05, -0.01), each = 5)
)
template_raster <- Region$new(coordinates = coordinates)$region_raster # full extent
template_raster[][-c(7, 9, 12, 14, 17:19)] <- NA # make U Island
region <- Region$new(template_raster = template_raster)
raster::plot(region$region_raster,
  main = "Example region (indices)",
  xlab = "Longitude (degrees)", ylab = "Latitude (degrees)",
  colNA = "blue"
)
# Example population model template
model_template <- PopulationModel$new(
  region = region,
  time_steps = 10, # years
  populations = region$region_cells, # 7
  stage_matrix = 1
)
# Example generators for initial abundance and carrying capacity
hs_matrix <- c(0.5, 0.3, 0.7, 0.9, 0.6, 0.7, 0.8)
initial_gen <- Generator$new(
  description = "initial abundance",
  region = region,
  hs_matrix = hs_matrix, # template attached
  inputs = c("initial_n"),
  outputs = c("initial_abundance")
)
initial_gen$add_generative_requirements(list(initial_abundance = "function"))
initial_gen$add_function_template("initial_abundance",
  function_def = function(params) {
    stats::rmultinom(1,
      size = params$initial_n,
      prob = params$hs_matrix
    )[, 1]
  },
  call_params = c("initial_n", "hs_matrix")
)
capacity_gen <- Generator$new(
  description = "carrying capacity",
  region = region,
  hs_matrix = hs_matrix, # template attached
  inputs = c("density_max"),
  outputs = c("carrying_capacity")
)
capacity_gen$add_generative_requirements(list(carrying_capacity = "function"))
capacity_gen$add_function_template("carrying_capacity",
  function_def = function(params) {
    round(params$density_max * params$hs_matrix)
  },
  call_params = c("density_max", "hs_matrix")
)
# Sample input parameters
sample_data <- data.frame(initial_n = c(40, 60, 80), density_max = c(15, 20, 25))
# Simulation manager
sim_manager <- SimulationManager$new(
  sample_data = sample_data,
  model_template = model_template,
  generators = list(initial_gen, capacity_gen),
  parallel_cores = 2,
  results_dir = tempdir()
)
run_output <- sim_manager$run()
run_output$summary
dir(tempdir(), "*.RData") # includes 3 result files
for (i in 1:3) {
  print(paste("Run", i, "results:"))
  file_name <- paste0(sim_manager$get_results_filename(i), ".RData")
  print(readRDS(file.path(tempdir(), file_name)))
}
dir(tempdir(), "*.txt") # plus simulation log
}